Hydrogen Vehicle









A hydrogen vehicle is a vehicle that uses hydrogen as its onboard fuel for motive power. Hydrogen vehicles include hydrogen-fuelled space rockets, as well as automobiles and other transportation vehicles. The power plants of such vehicles convert the chemical energy of hydrogen to mechanical energy either by burning hydrogen in an internal combustion engine, or by reacting hydrogen with oxygen in a fuel cell to run electric motors. Widespread use of hydrogen for fuelling transportation is a key element of a proposed hydrogen economy.

Hydrogen Vehicle
As of 2016, there are 3 hydrogen cars publicly available in select markets: the Toyota Mirai, the Hyundai ix35 FCEV, and the Honda Clarity. Several other companies are working to develop hydrogen cars. As of 2014, 95% of hydrogen is made from natural gas. It can be produced using renewable sources, but that is an expensive process.


Integrated wind-to-hydrogen (power-to-gas) plants, using electrolysis of water, are exploring technologies to deliver costs low enough, and quantities great enough, to compete with hydrogen production using natural gas. The drawbacks of hydrogen use are high carbon emissions intensity when produced from natural gas, capital cost burden, low energy content per unit volume, production and compression of hydrogen, and the large investment in infrastructure that would be required to fuel vehicles.

Hydrogen does not exist in convenient reservoirs or deposits like fossil fuels or helium. It is produced from feedstocks such as natural gas and biomass or electrolyzed from water. A suggested benefit of large-scale deployment of hydrogen vehicles is that it could lead to decreased emissions of greenhouse gasses and ozone precursors. However, as of 2014, 95% of hydrogen is made from methane. It can be produced by thermochemical or pyrolitic means using renewable feedstocks, but that is an expensive process. Renewable electricity can however be used to power the conversion of water into hydrogen: Integrated wind-to-hydrogen (power to gas) plants, using electrolysis of water, are exploring technologies to deliver costs low enough, and quantities great enough, to compete with traditional energy sources. More details